Fluid Phase Equilibria of Binary *n*-Alkane + Squalane Systems

Diana E. Nanu,[†] Wim Poot,[†] Dan Geană,[‡] and Theodoor W. de Loos^{*,†}

Department of Chemical Technology, Laboratory of Applied Thermodynamics and Phase Equilibria, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands, and Department of Applied Physical Chemistry and Electrochemistry, University "Politehnica" Bucharest, Spl. Independentei 313, 78126 Bucharest, Romania

In this study, the phase behavior of binary systems of squalane (C₃₀H₆₂, 2,6,10,15,19,23-hexamethyltetracosane) with ethane, and propane, is investigated. For both systems, vapor-liquid equilibrium data were measured using the synthetic method in the temperature range (263 to 473) K and pressure range (0.2 to 16) MPa. Also a liquid-liquid-vapor curve was determined for the ethane + squalane system. The experiments were carried out for various mixtures covering almost the whole composition range. Additionally, the experimental data have been modeled using the Soave-Redlich-Kwong equation of state using two adjustable parameters in the classical mixing rules.

Introduction

Phase behavior measurements for binary systems of short and long paraffins are very important both for practical process design and for developing theoretical models. For example, these systems can be considered as models for mixtures of oligomers and polymers in lowmolar-mass solvents that are of interest for the design of dewaxers in a polymer plant. Such data can also be used to obtain the parameters for different types of thermodynamic models such as equations of state, group contribution methods and molecular simulation calculations, models that can be used in further predictions.

Although systems of short and long chain normal alkanes have been extensively studied, very little information has been published for systems with branched long-chain alkanes. Paas et al.¹ have reported some work on binary systems of squalane with methane and ethane. However, their work focused only on mixtures with high concentration of ethane (more than 0.9 in mole fraction) and low and very low temperatures. Recently, Aalto et al.² have reported some bubble point pressures and densities for the binary propane + squalane in the vicinity of the critical point of propane. In this paper, we present fluid phase equilibrium data for the two binary systems, ethane + squalane and propane + squalane, over wide ranges of temperature, composition, and pressure.

Experimental Section

Method. The experiments were carried out using the socalled Cailletet apparatus according to the synthetic method. In a binary mixture with constant overall composition, a two-phase equilibrium is bivariant; therefore, by setting the temperature to a certain constant value, only the pressure could be varied until a phase change is observed visually. Bubble- and dew- points are the points at which the last bubble of vapor, or the last droplet of liquid, disappears, respectively $(L + V \rightarrow L \text{ or } L + V \rightarrow V)$. The bubble- and dew-point pressures are measured visually as

a function of temperature for mixtures with known composition.

A three-phase equilibrium is monovariant in a binary mixture with a given composition, so if the temperature is fixed, the volume can be adjusted to observe three phases and the recorded pressure is the equilibrium pressure.

A detailed description of the apparatus and the procedure is given elsewhere.³ A sample of the mixture with known composition is confined in a narrow glass tube, mounted in a thermostatic bath. During the experiments, the temperature is maintained constant to within 0.03 K. The temperature is measured with a Pt100 resistance thermometer, which was calibrated against a standard thermometer with an accuracy of ± 0.01 K. The uncertainty in the measured temperature was approximately 0.02 K. The pressure is applied hydraulically and is measured with a dead weight pressure gauge (Budenberg) with an accuracy of 0.005 MPa. The experiments were done for various mixtures covering almost the whole composition range in a temperature range of (263 to 473) K and a pressure range of (0.2 to 16) MPa.

Materials. The mole fraction purity of the ethane (Messer Griesheim) and the propane (Messer Griesheim) used was greater than 0.9995. The squalane was purchased from Merk Schuchardt as "squalane for synthesis" with a minimum purity of at least 99% (GC) and was used without further purification.

Results. The measured *p*-*T* equilibrium data for the binary system ethane + squalane at 12 different compositions are summarized in Table 1. It has been found that this binary exhibits partial miscibility in the liquid phase; that is, in this binary, a three-phase equilibrium liquidliquid-vapor with lower (LCEP) and upper (UCEP) critical endpoints exists. In the LCEP, the heavy liquid and the light liquid become critical in the presence of a noncritical vapor phase ($L_2 = L_1 + V$). In the UCEP, the light liquid and the vapor become critical in the presence of a noncritical heavy liquid phase $(L_2 + L_1 = V)$. The liquid-liquid split occurs in mixtures with composition rich in ethane. For such compositions the transitions from the two-phase $L_1 + V$ to the homogeneous region L_1 , and from the twophase region $L_1 + L_2$ to the homogeneous region L_1 , and liquid-liquid-vapor (L1L2V) equilibrium data were mea-

^{*} To whom correspondence should be addressed. E-mail: t.deloos@tnw.tudelft.nl. Phone: +31-15-2788478. Fax: +31-15-2788047.

Delft University of Technology.

[‡] University "Politehnica" Bucharest.

Table 1. Experimental Vapor–Liquid and Liquid–Liquid Equilibrium Data for the System [x Ethane + (1 - x) Squalane] at Fixed Molar Composition

X		<i>T</i> /K	<i>p</i> /MPa	<i>T</i> /K	<i>p</i> /MPa	<i>T</i> /K	<i>p</i> /MPa	Х		<i>T</i> /K
0.9799	$L_1 + V \mathop{\rightarrow} L_1$	248.78	1.265	263.57	1.885	273.59	2.405	0.7012	$L + V \mathop{\rightarrow} L$	442.7
		283.57	3.035	293.60	3.790					472.7
	$L_1 + L_2 \rightarrow L_1$	297.54	4.380	298.79	4.665	300.50	5.040	0.5975	$L + V \rightarrow L$	263.7
		303.56	5.705	313.57	7.765	323.56	9.660			293.5
		328.61	10.566							322.9
.9752	$L_1 + V \rightarrow L_1$	263.53	1.885	273.52	2.405	283.46	3.030			342.6
		293.55	3.785	294.44	3.860					373.0
	$L_1 + L_2 \rightarrow L_1$	297.40	4.380	298.46	4.620	299.37	4.820			392.3
		300.34	5.035	301.35	5.260	302.38	5.485			422.7
		303.43	5.715	303.46	5.720	304.42	5.925			452.7
		305.32	6.120	306.30	6.280	307.07	6.490	0.5031	$L + V \rightarrow L$	273.5
		308.40	6.765	313.36	7.775	318.40	8.760			303.5
		323.42	9.695	328.47	10.595	332.95	11.330			332.9
		342.93	12.925	352.97	14.380					362.3
9504	$L_1 + V \rightarrow L_1$	263.59	1.865	273.58	2.385	283.52	3.015			392.2
		293.57	3.785							422.7
	$L_1 + L_2 \rightarrow L_1$	298.48	4.410	303.43	5.515	308.48	6.600			452.7
		313.41	7.615	318.40	8.605	323.41	9.560	0.3989	$L + V \rightarrow L$	273.6
		332.57	11.225	342.50	12.865	352.47	14.365			303.5
8992	$L + V \rightarrow L$	263.49	1.815	273.58	2.320	283.49	2.925			332.6
		293.52	3.665	303.49	4.575	313.49	5.870			352.7
		323.05	7.520	333.06	9.235	343.03	10.850			382.8
		353.00	12.360	362.94	13.760	372.89	15.050			412.6
		382.81	16.240							442.5
8498	$L + V \rightarrow L$	263.55	1.655	273.59	2.115	283.69	2.665			472.6
		293.48	3.300	303.51	4.065	313.55	4.965	0.2994	$L + V \rightarrow L$	273.5
		323.50	6.015	332.92	7.230	342.92	8.525			303.5
		353.00	9.825	363.03	11.085	373.03	12.280			332.9
		382.96	13.395	392.85	14.435					352.7
8007	$L + V \rightarrow L$	263.45	1.500	273.42	1.900	283.49	2.380			382.7
		293.46	2.935	303.51	3.580	313.49	4.300			412.3
		323.45	5.110	332.95	5.945	342.82	6.885			442.5
		352.79	7.860	362.87	8.860	372.91	9.850			472.6
		382.87	10.790	392.80	11.695	402.79	12.550	0.2046	$L + V \rightarrow L$	283.6
		412.83	13.365	422.85	14.120	432.86	14.825			313.5
7012	$L + V \rightarrow L$	263.48	1.205	273.39	1.505	283.48	1.870			342.9
		293.59	2.270	299.35	2.540	313.46	3.210			372.7
		323.45	3.750	332.97	4.300	342.94	4.905			402.8
		352.85	5.525	362.83	6.165	372.56	6.805			422.8
		382.78	7.460	392.76	8.095	402.72	8.715			452.9
		412.76	9.315	422.77	9.850	432.79	10.435			

Table 2. Experimental Data of the Three-Phase Equilibrium L_1L_2V in the Ethane-Squalane System

<i>T</i> /K	<i>p</i> /MPa	<i>T</i> /K	<i>p</i> /MPa	<i>T</i> /K	<i>p</i> /MPa
295.57 295.71 296.00 296.53 297.38 297.89 298.30	$\begin{array}{r} 3.930^a\\ 3.961\\ 3.979\\ 4.028\\ 4.105\\ 4.166\\ 4.196\end{array}$	298.79 299.33 300.34 300.94 301.35 302.37	$\begin{array}{r} 4.231 \\ 4.287 \\ 4.374 \\ 4.436 \\ 4.474 \\ 4.570 \end{array}$	302.53 303.43 304.42 305.32 306.51 306.69	$\begin{array}{r} 4.581 \\ 4.685 \\ 4.775 \\ 4.865 \\ 4.996 \\ 5.013^b \end{array}$

^{*a*} LCEP (L₂ = L₁ + V). ^{*b*} UCEP (L₂ + L₁ = V).

sured (see Figure 1). As depicted in Figure 1, which present an isopleth for $x_{\text{ethane}} = 0.9504$, the intersection of the L₁ $+ V \rightarrow L_1$ and $L_2 + L_1 \rightarrow L_1$ curves gives a point on the three-phase equilibrium line. The three-phase equilibrium data and both the critical end points are presented in Table 2. The two critical end points measured in this work are slightly different from the ones reported by Paas et al.,¹ i.e., $T_{\text{LCEP}} = 295.7$ K, $p_{\text{LCEP}} = 3.87$ MPa, and $T_{\text{UCEP}} = 306.8$ K, $p_{\text{UCEP}} = 4.92$ MPa. In accordance with ref 1, an additional liquid-liquid immiscibility should occur in this system at very low temperatures. However, this could not be measured with the experimental setup used in this work and can be observed only in strongly undercooled liquid mixtures. Therefore, the present work suggests that the fluid phase behavior of this system most likely belongs to type V in the classification of Van Konynenburg and Scott.⁴

In the system propane + squalane, no liquid-liquid immiscibility is found in the range of temperature and pressure covered by this work. The measured bubble-point

0.7012	$L + V \rightarrow L$	442.79	10.950	452.81	11.425	462.81	11.875
		472.79	12.290				
0.5975	$L + V \rightarrow L$	263.78	0.885	273.62	1.195	283.59	1.450
		293.51	1.735	303.50	2.050	313.58	2.400
		322.98	2.825	323.61	2.770	332.79	3.145
		342.67	3.555	352.91	3.980	362.99	4.425
		373.01	4.830	382.43	5.270	382.43	5.270
		392.31	5.700	402.04	6.140	412.06	6.545
		422.70	6.950	432.69	7.340	442.68	7.715
		452.71	8.060	462.68	8.405	472.67	8.715
0.5031	$L + V \rightarrow L$	273.52	0.865	283.69	1.070	293.52	1.265
		303.50	1.495	313.57	1.745	323.03	1.990
		332.98	2.270	342.90	2.570	352.77	2.855
		362.36	3.165	372.43	3.480	382.68	3.780
		392.25	4.100	402.38	4.405	412.46	4.705
		422.71	4.995	432.51	5.290	442.71	5.560
		452.73	5.825	462.70	6.070	472.72	6.310
0.3989	$L + V \rightarrow L$	273.64	0.610	283.53	0.745	293.59	0.895
		303.53	1.050	313.60	1.225	323.48	1.405
		332.67	1.580	333.66	1.600	342.60	1.775
		352.73	1.990	362.89	2.195	372.89	2.410
		382.84	2.615	392.74	2.835	402.71	3.035
		412.63	3.240	422.64	3.440	432.65	3.640
		442.52	3.830	452.66	4.015	462.66	4.190
0.0004		472.68	4.360	000 50	0 500	000.00	0 000
0.2994	$\Gamma + \Lambda \rightarrow \Gamma$	2/3.5/	0.430	283.58	0.530	293.68	0.630
		303.50	0.720	313.48	0.830	323.62	0.955
		332.92	1.075	333.66	1.080	342.75	1.200
		332.12	1.330	302.79	1.470	312.13	1.005
		382.70	1.740	392.82	1.890	402.70	2.023
		412.33	2.100	422.39	2.293	432.49	2.423
		442.32	2.000	452.57	2.000	402.39	2.805
0.2046	$I \rightarrow V \rightarrow I$	472.00	2.920	202 52	0.205	202.60	0.450
0.2040	L + V - L	212 56	0.330	293.33	0.303	222 00	0.430
		313.00	0.520	259 97	0.000	362 85	0.070
		346.96 279 70	1 000	392.01	1 000	302.03	1 1 70
		102 82	1.000	JOL.13	1.090	199 85	1.170
		402.02	1.200	412.32	1.545	466.00	1.425
		452 01	1.425	162 75	1 7/0	179 76	1 815
		чJ2.31	1.000	106.13	1.740	716.10	1.010

p/MPa

T/K

p/MPa

T/K

p/MPa

 $(L + V \rightarrow L)$, dew-point $(L + V \rightarrow V)$, and critical-point (L = V) temperatures and pressures for this binary, at 13 different compositions, are given in Table 3. Therefore, according to the present, work the fluid phase behavior in

Figure 1. *p*-*T* diagram showing two-phase transition curves and the three-phase equilibrium line for the binary system [*x* ethane + (1 - x) squalane] with x = 0.9504: \bullet , $L_1 + V \rightarrow L_1$; \blacksquare , $L_2 + L_1 \rightarrow L_1$; +, $L_2 + L_1 + V$; \checkmark , LCEP ($L_2 = L_1 + V$); \blacktriangle , UCEP ($L_2 + L_1 = V$).

X		<i>T</i> /K	<i>p</i> /MPa	<i>T</i> /K	<i>p</i> /MPa	<i>T</i> /K	<i>p</i> /MPa	X		<i>T</i> /K	<i>p</i> /MPa	<i>T</i> /K	<i>p</i> /MPa	<i>T</i> /K	<i>p</i> /MPa
0.9803	$L + V \mathop{\rightarrow} L$	263.49	0.349	273.49	0.476	283.46	0.635	0.9000	$L + V \mathop{\rightarrow} L$	373.45	3.979	383.42	4.689	393.33	5.479
		293.45	0.831	303.40	1.069	313.41	1.354			403.39	6.336	403.28	6.342	413.11	7.212
		323.40	1.690	333.43	2.084	343.42	2.540			422.66	8.052	432.79	8.887	442.59	9.652
		353.36	3.062	363.35	3.669	373.35	4.374			452.20	10.357	461.96	11.012	471.86	11.607
		383.36	5.227					0.7999	$L + V \rightarrow L$	263.44	0.274	273.47	0.372	283.44	0.494
	L = V	393.46	6.123							293.44	0.644	303.40	0.823	313.38	1.037
	$L + V \rightarrow V$	394.39	6.303	395.41	6.403	403.39	7.163			323.39	1.286	333.32	1.570	343.27	1.893
		413.40	8.063	423.41	8.888	433.48	9.638			353.23	2.260	363.22	2.669	373.21	3.121
0.9751	$\Gamma + \Lambda \rightarrow \Gamma$	263.56	0.347	273.62	0.474	283.59	0.634			383.21	3.614	393.22	4.148	403.24	4.713
		293.56	0.832	303.50	1.069	303.56	1.071			413.25	5.299	423.26	5.908	433.42	6.519
		313.50	1.357	322.97	1.680	323.58	1.697			443.41	7.119	453.39	7.704	463.34	8.269
		332.93	2.075	342.85	2.525	352.74	3.040	0 7005		473.34	8.809	070 50	0.005	000 45	0 400
		362.76	3.655	367.78	4.000	372.78	4.360	0.7005	$L + V \rightarrow L$	263.48	0.225	273.52	0.305	283.45	0.403
		382.70	5.200	387.08	5.685	392.00	6.170			293.47	0.524	303.42	0.007	313.40	0.833
	T _ V	397.00	0.000							323.41	1.023	333.41	1.240	343.29	1.492
	L = V	398.07	0.700	400 70	6 045	109.65	7 1 4 0			303.28	1.700	303.27	2.009	3/3.2/	2.399
	$L + v \rightarrow v$	399.10	0.000	400.70	0.945	402.03	7.140			303.23	2.132	393.23	3.134	403.23	3.320
		407.03	7.000	412.00	0.040	422.00	0.000			413.23	5.957	423.22	4.300	400.10	4.700
		432.03	9.030	442.03	11 005	452.00	10.940			443.20	5.219 6.490	433.22	3.040	403.22	0.009
0 9701	$I \rightarrow V \rightarrow I$	263.46	0 333	273 50	0.459	283 17	0.617	0.6012	$I + V \rightarrow I$	263 17	0.400	273 10	0 242	283 /6	0 320
0.5701	LIVL	203.40	0.333	203 30	1 047	213 38	1 327	0.0012	LIVL	203.47	0.100	203.40	0.242	213 39	0.520
		323 35	1 656	333.33	2 044	343 35	2 512			323 37	0.410	333.36	0.961	343.34	1 152
		353.35	3.032	363.36	3.636	373.51	4.349			353.29	1.357	363.28	1.581	373.26	1.824
		383.42	5.192	393.48	6.176	403.48	7.141			383.29	2.084	393.26	2.354	403.27	2.637
		404.45	7.236							413.30	2.932	423.28	3.234	433.30	3.541
	L = V	406.44	7.416							443.30	3.852	453.29	4.154	463.28	4.462
	$L + V \rightarrow V$	408.46	7.601	413.48	8.051	423.45	8.891			473.28	4.763				
		428.48	9.291	433.61	9.672	443.51	10.357	0.5012	$L + V \rightarrow L$	298.89	0.360	303.81	0.407	313.44	0.499
		453.51	10.977	463.52	11.512	473.51	11.967			323.39	0.609	333.30	0.738	343.31	0.872
0.9600	$L + V \rightarrow L$	263.45	0.340	273.41	0.464	283.44	0.621			353.50	1.024	363.50	1.186	373.49	1.360
		293.42	0.813	303.40	1.047	313.38	1.327			383.49	1.549	393.52	1.741	403.53	1.947
		323.35	1.655	333.35	2.040	343.30	2.489			413.56	2.157	423.63	2.372	433.68	2.598
		353.23	3.003	363.20	3.599	373.17	4.296			443.36	2.807	453.32	3.032	463.27	3.249
		383.19	5.134	393.39	6.142	403.34	7.137	0.3980	$L + V \rightarrow L$	297.92	0.259	304.56	0.300	313.42	0.362
		413.34	8.072	423.31	8.937	428.31	9.342			323.35	0.440	333.30	0.529	343.27	0.624
		430.30	9.497	432.29	9.647	438.27	10.092			353.24	0.731	363.35	0.846	373.31	0.967
		442.30	10.372							383.28	1.097	393.26	1.231	403.25	1.373
	L = V	442.77	10.407	440.00	10 770					413.22	1.528	423.20	1.665	433.16	1.814
0.0400	$L + V \rightarrow V$	443.30	10.437	448.30	10.772	000 40	0.010			443.14	1.970	453.08	2.119	403.07	2.212
0.9499	$\Gamma + \Lambda \rightarrow \Gamma$	203.43	0.338	202 44	0.403	203.40	0.018	0.2019	TIVI	4/3.00	2.420	205 21	0.225	000 40	0.966
		293.44	1.651	303.44	1.042	313.42	1.320	0.3018	$\Gamma + \Lambda \rightarrow \Gamma$	313.97	0.273	323.31	0.323	332.42	0.300
		252 22	2 016	362 20	2 612	343.40	2.302			362 61	0.427	341.12	0.407	392.71	0.303
		373.00	4 304	383 14	5 130	303.20	6 002			302.01	0.301	102 67	0.000	112 58	1 038
		402 94	7 082	412 70	8 017	422 58	8 882			422 66	1 140	432 68	1 941	442 65	1 344
		432.30	9.662	442.13	10.382	447 18	10 723			452.68	1 4 4 9	462.66	1.554	473.82	1 669
		447 21	10 717	452.16	11 038	457 12	11 333	0 1525	$I_{+} + V \rightarrow I_{-}$	332.87	0 182	342 79	0 205	352 77	0.237
		461.09	11.558	108.10	11.000	107.12	11.000	0.1020	2 1	362.74	0.271	372.76	0.307	382.71	0.346
0.9000	$L + V \rightarrow L$	273.52	0.441	283.50	0.587	293.43	0.765			392.72	0.388	402.71	0.430	412.70	0.474
		303.40	0.987	263.49	0.323	313.42	1.245			422.70	0.519	432.73	0.565	442.72	0.610
		323.40	1.558	333.41	1.912	333.53	1.918			453.22	0.658	463.21	0.705	473.39	0.751
		343.52	2.330	353.51	2.808	363.47	3.358								

Table 3. Experimental Vapor–Liquid Equilibrium Data for the System [x Propane +(1 - x) Squalane] at Fixed Molar Composition

the system propane + squalane is of type I in the before mentioned classification, 4 even though at lower temperatures a liquid–liquid immiscibility with an upper critical solution temperature as for a type II behavior might occur.

Isothermal p, x sections were obtained by interpolation from polynomials fitted to the p, T data.

Modeling

The bubble-point VLE data of both binary systems were modeled with the Soave–Redlich–Kwong (SRK) equation of state⁵ using the VLE95 program⁶ for fluid phase equilibrium calculations. The classical one-fluid van der Waals mixing rules were applied as follows:

$$a = \sum_{i=1,j=1}^{2} \sum_{j=1}^{2} x_{i} x_{j} (a_{i} a_{j})^{0.5} (1 - k_{ij})$$
(1)

$$b = \sum_{i=1}^{2} \sum_{j=1}^{2} x_i x_j \frac{(b_i + b_j)}{2} (1 - I_{ij})$$
(2)

Figures 2 and 3 show that the calculated VLE curves in the two investigated systems are in agreement with the experimental isothermal p, x data. The optimized values of the interaction parameters, k_{ij} and l_{ij} , for each isotherm, and the average absolute deviation in estimating the saturation pressures, AADP, eq 3 are summarized in Table 4.

$$AADP = \frac{1}{NEXP} \sum_{i=1}^{NEXP} \left| \frac{p_i^{exp} - p_i^{calc}}{p_i^{exp}} \right| 100$$
(3)

The prediction of three-phase region for the binary mixture ethane + squalane was performed with the binary interaction parameters set to zero and with the binary interaction parameters fitted to vapor—liquid equilibrium data at the temperature of LCEP. The calculated critical curve and the predicted the three-phase curve are shown in Figures 4 and 5. The results obtained are in qualitative agreement with the experimental data.

Figure 2. Vapor – liquid equilibria for [*x* propane + (1 - x) squalane] depicted as isothermal *p*, *x* sections. Experimental data: •, 293.15 K; \blacktriangle , 313.15 K; *, 353.15 K; \blacktriangledown , 373.15 K; solid lines, calculated with SRK-EoS and k_{ij} and l_{ij} from Table 4.

Figure 3. Vapor-liquid equilibria for [x ethane + (1 - x) squalane] depicted as isothermal *p*, *x* sections. Experimental data; •, 293.15 K; \blacktriangle , 313.15 K; *, 353.15 K; •, 373.15 K; solid lines, calculated with SRK-EoS and k_{ij} and l_{ij} from Table 4.

Table 4. Modeling Results of the Vapor – Liquid Equilibria

	ethane	-squalaı	ne system	propane-squalane system					
<i>T</i> /K	k _{ij}	l _{ij}	AADP %	k _{ij}	l _{ij}	AADP %			
293.15	0.0151	0.0229	2.38	0.0014	0.0214	1.38			
313.15	0.0236	0.0289	3.18	-0.0059	0.0189	1.65			
353.15	0.0239	0.0350	3.52	-0.0090	0.0203	1.93			
373.15	0.0209	0.0364	3.68	-0.0080	0.0235	2.20			

Discussions and Conclusions

This paper presents fluid phase equilibrium data for the binary systems ethane + squalane and propane + squalane. The results confirm the occurrence of a liquid–liquid-vapor equilibrium in the ethane + squalane system at temper-

Figure 4. T-x projection of the critical curve for the system [*x* ethane + (1 - *x*) squalane]. Solid line, calculated with SRK-EoS and $k_{ij} = l_{ij} = 0$; dashed line, calculated with SRK-EoS and k_{ij} and l_{ij} , from VLE at LCEP; \bullet , ethane CP; \blacksquare , UCEP; \bigstar , LCEP.

Figure 5. p-T projection of the three phase curve and of the critical line for the system ethane + squalane: \bigcirc , LLVE experimental data; ---, ethane LVE; \bullet , ethane CP; $-\blacktriangle$ -, LLVE calculated with SRK-EoS and $k_{ij} = l_{ij} = 0$; ----, critical line (L₁ = L₂) calculated with SRK-EoS and $k_{ij} = l_{ij} = 0$.

atures close to the critical point of ethane. The present measurements indicate that this binary is of type V in the classification of Van Konynenburg and Scott.⁴ In the temperature range covered in this work, the system propane + squalane behaves as a type I system in the before mentioned classification. However, according to some earlier work¹ the systems ethane + squalane and propane + squalane should exhibit type IV and type II behavior, respectively. Further investigations in strongly undercooled conditions should be done to confirm this hypothesis (i.e., to show the occurrence of a liquid–liquid demixing at low temperatures with an upper critical solution temperature). The VLE modeling results and the predicted LLV line are in qualitative agreement with the experimental data.

Literature Cited

- (1) Paas, R.; Alwani, Z.; Horvath, E.; Schneider, G. M. Phase equilibria and critical phenomena in fluid binary mixtures of 2,6, 10, 15, 19, 23-hexamethyltetracosane with methane and ethane up to 200 MPa. *J. Chem. Thermodyn.* **1979**, *11*, 693–702. Aalto, M.; Liukkonen, S. Bubble Point Pressures and Densities
- (2) for the Binary Systems of Propane with Triacontane, Hexatriacontane, Tetracontane, Pentacontane, and Squalane at 353-373 K and 4.00-7.00 MPa. J. Chem. Eng. Data 1996, 41, 79-83.
- (3) Loos, Th. W. de; Kooi, H. J. van der; Ott, P. L. Vapor-Liquid Critical Curve of the System Ethane + 2-Methylpropane. J. Chem. Eng. Data 1986, 31, 166-168.
- Van Konynenburg, P. H.; Scott, R. L. Critical Lines and Phase (4) Equilibria in Binary van der Waals Mixtures. *Philos. Trans. R. Chem. Soc.* **1980** 298 A, 495–540.
- (5)
- Soave, G. Equilibrium constants from a modified Redlich-Kwong equation of state. *Chem. Eng. Sci.* **1972**, *27*, 1197–1203. Geană, D.; Feroiu, V. *Equations of State. Applications to Phase Equilibria*; Editura Tehnica: Bucharest, Romania, 2000. (6)

Received for review July 10, 2002. Accepted December 20, 2002. JE020127Z